From shopping recommendations to self-driven cars, Artificial Intelligence (AI) seems to be mushrooming in every aspect of the world in recent times. The term, along with Machine Learning (ML), is the talk of the town. Together, AI and ML are changing the space of business, tech, and even our personal lives at an astonishing rate. But are they two interchangeable terms? How can we distinguish one from the other, and what are the latest trends of each?
The core of artificial intelligence and machine learning began with the first computers, where engineers used arithmetic and logic to recreate capabilities similar to those of the human brain. Breakthroughs in medicine and neuroscience have helped us better understand what constitutes the mind, changing the notion of AI to focus on replicating the human decision-making process.
Artificial intelligence is the ability of computer systems to mimic human cognitive functions such as understanding and problem-solving. Through AI, computer systems use mathematics and logic to simulate the reasoning humans use to learn from new information and make decisions.
A subset of artificial intelligence is machine learning (ML), which refers to the concept that computer programs can automatically learn from and adapt to new data without being assisted by humans. Deep learning techniques enable this automatic learning through the absorption of huge amounts of unstructured data such as text, images, or video.
From shopping recommendations to self-driven cars, Artificial Intelligence (AI) seems to be mushrooming in every aspect of the world in recent times. The term, along with Machine Learning (ML), is the talk of the town. Together, AI and ML are changing the space of business, tech, and even our personal lives at an astonishing rate. But are they two interchangeable terms? How can we distinguish one from the other, and what are the latest trends of each?
The core of artificial intelligence and machine learning began with the first computers, where engineers used arithmetic and logic to recreate capabilities similar to those of the human brain. Breakthroughs in medicine and neuroscience have helped us better understand what constitutes the mind, changing the notion of AI to focus on replicating the human decision-making process.
Artificial intelligence is the ability of computer systems to mimic human cognitive functions such as understanding and problem-solving. Through AI, computer systems use mathematics and logic to simulate the reasoning humans use to learn from new information and make decisions.
A subset of artificial intelligence is machine learning (ML), which refers to the concept that computer programs can automatically learn from and adapt to new data without being assisted by humans. Deep learning techniques enable this automatic learning through the absorption of huge amounts of unstructured data such as text, images, or video.
From shopping recommendations to self-driven cars, Artificial Intelligence (AI) seems to be mushrooming in every aspect of the world in recent times. The term, along with Machine Learning (ML), is the talk of the town. Together, AI and ML are changing the space of business, tech, and even our personal lives at an astonishing rate. But are they two interchangeable terms? How can we distinguish one from the other, and what are the latest trends of each?
The core of artificial intelligence and machine learning began with the first computers, where engineers used arithmetic and logic to recreate capabilities similar to those of the human brain. Breakthroughs in medicine and neuroscience have helped us better understand what constitutes the mind, changing the notion of AI to focus on replicating the human decision-making process.
Artificial intelligence is the ability of computer systems to mimic human cognitive functions such as understanding and problem-solving. Through AI, computer systems use mathematics and logic to simulate the reasoning humans use to learn from new information and make decisions.
A subset of artificial intelligence is machine learning (ML), which refers to the concept that computer programs can automatically learn from and adapt to new data without being assisted by humans. Deep learning techniques enable this automatic learning through the absorption of huge amounts of unstructured data such as text, images, or video.